

Best Practice #Unit 3/4- Further Mathematics

Matrices

Question:

In a remote country town each adult is either *currently attending* a gym or *not currently attending* a gym. A person studying gym attendance in this town constructs a model for how attendance might change. It assumes that at the end of a given month,

- -30% of those attending a gym continues to attend in the next month, while 70% stopped attending.
- -70% of those *not* attending a gym change, and attend a gym in the next month, while 30% continue to not attend.

The matrix $A = \begin{bmatrix} 0.3 & 0.7 \\ 0.7 & 0.3 \end{bmatrix}$ can be used to represent this model.

Suppose at the start of January 2011 there will be 27000 adults attending a gym and 54000 adults not attending a gym.

Let
$$S_o = \begin{bmatrix} 27000 \\ 54000 \end{bmatrix}$$

- a) i) Write down a matrix expression that can be used to calculate the number of adults attending and not attending at the start of April 2011.
 - ii) Calculate number of adults attending and not attending at the start of January 2012.

Consider the following two different models for change in gym attendance.

- Model A
$$A = \begin{bmatrix} 0.4 & 0.6 \\ 0.6 & 0.4 \end{bmatrix}$$

- Model A
$$A = \begin{bmatrix} 0.4 & 0.6 \\ 0.6 & 0.4 \end{bmatrix}$$

- Model B $A = \begin{bmatrix} 0.1 & 0.9 \\ 0.9 & 0.1 \end{bmatrix}$

b) For each model, find A^{20}

Now let
$$A = \begin{bmatrix} x & 1-x \\ 1-x & x \end{bmatrix}$$

c) Based on your answers to part a) ii) and part b), make a conjecture about An when $n \rightarrow \infty$ and 0 < x < 1, and provide an answer with respect to gym attendees

(7 marks)

Best Practice #Unit 3/4- Further Mathematics

Step	Method/ Hint	Answer	Marks allocation (where applicable)	
PART (a)(i) of the question:				
	 Identify identity matrices (columns add to 1) Identify that April is 3 transitions from January (FEB, MAR, APR) Write the rule for transition matrices with 3 transitions 	$S_3 = A^3 S_o$	1 mark	

Step	Method/ Hint	Answer	Marks allocation (where applicable)
PART	(a)(ii) of the question:		
	 Identify that January 2012 is 12 transitions Complete the matrix multiplication for the rule S₁₂ = A¹² S_o	$S_{12} = \begin{bmatrix} 0.3 & 0.7 \\ 0.7 & 0.3 \end{bmatrix}^{12} \times \begin{bmatrix} 27000 \\ 54000 \end{bmatrix}$ $S_{12} = \begin{bmatrix} 40499.8 \\ 40500.2 \end{bmatrix} \qquad \begin{array}{r} \text{Attending} \\ \text{Not Attending} \end{array}$ $Answer: \text{ According to this model there will be approximately } 40500 \text{ adults attending a gym in January } 2012, \text{ and the same number not attending.}$ $NOTE \text{ - attending + not attending = constant (ie. the total must equal } 81000 \text{ adults})$	1 mark

Best Practice #Unit 3/4- Further Mathematics

Step	Method/ Hint	Answer	Marks allocation (where applicable)
PART (b) of the question:			
	Lisa Calculator to find A20 for model A and model B	Model A $\rightarrow \begin{bmatrix} 0.4 & 0.6 \\ 0.6 & 0.4 \end{bmatrix}^{20} = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$	1 mark
		Model B $\rightarrow \begin{bmatrix} 0.1 & 0.9 \\ 0.9 & 0.1 \end{bmatrix}^{20} = \begin{bmatrix} 0.506 & 0.494 \\ 0.494 & 0.506 \end{bmatrix}$	1 mark (2 marks total)

Step	Method/ Hint	Answer	Marks allocation (where applicable)
PART	(c) of the question:		
	Identify that is asking for the steady state values (when $n\rightarrow\infty$)	Model A $\rightarrow \begin{bmatrix} 0.4 & 0.6 \\ 0.6 & 0.4 \end{bmatrix}^{50} = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$	
	- Take each model to a high power and note the values	Model B $\rightarrow \begin{bmatrix} 0.1 & 0.9 \\ 0.9 & 0.1 \end{bmatrix}^{50} = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$	
	 Once steady values are identified (ie. model A matches values of model B), place 'n' in the position of the high 	For either model $A^n = \begin{bmatrix} 0.5 & 0.5 \\ 0.5 & 0.5 \end{bmatrix}$	1 mark
	power - Identify what this informs about the number of	Therefore, in the long term, 50% of the population will	2marks
	attendees to a gym	attend the gym and 50% will not	(3 marks total)